Bringing Multigrid to the Masses

Robert D. Falgout Lawrence Livermore National Laboratory

SciDAC Review May 13, 2003

Multigrid is Optimal: convergence rate is independent of discretization parameters

Want (nearly) constant solution time as problem size grows in proportion to the number of processors

We are developing geometric multigrid for semi-structured-grid problems

- Grids are mostly—but not entirely—structured
- Examples: block-structured grids, structured adaptive mesh refinement (AMR) grids, overset grids

 Basic idea: exploit grid structure where present

 Focusing now on solvers for AMR (for APDEC)

We are developing parallel Fast Adaptive Composite Grid (FAC) methods for AMR

- AMR application developers have had little linear solver library support
 - Usually have to "roll their own" solvers
 - Currently hypre is being used for level & bottom solves
- FAC was designed specifically for AMR (McCormick)

Utilizes the grid hierarchy

Involves so-called "level Library design issue: solvers like FAC require

(additional) information about structure

Semi-structured grid interface (SEMI) is our vehicle to deliver FAC... and more

- SEMI is one of hypre's conceptual interfaces
- AMG, ILU, already available
- Currently used by ASCI for block-structured apps

- Augmenting for AMR users
 - more natural way of handling coarse-fine boundaries
- Releasing a spec & impl
 - De facto standard
 - PETSc solver availability
 - CTS² component

A block-structured grid with 3 variable types and 3 discretization stencils

We are interacting closely with APDEC

- Integration into Chombo is in progress
 - hypre level / bottom solvers available
 - Some performance issues to be resolved.

- Implementing parallel FAC code
 - Works in serial; finishing up for parallel
- Developing FAC for anisotropic problems
 - Needed for fusion applications
- New non-Galerkin option in PFMG for level solves
 - Retains discretization stencil on all MG levels
 - Reduces storage requirements
 - 2x speedup in 2D; expect even more in 3D

First release of *hypre* featuring the Babel language interoperability tool

- Babel provides:
 - language interoperability
 - 00 support
- Beta release 1.8.0b uses
 Babel for two major
 interface classes:
 - IJ system builders
 - ParCSR solvers (e.g., AMG)

- Long term plan: Migrate all hypre interfaces to Babel to improve and expand language support
- Babel / SIDL crucial for PETSc-hypre interoperability plans and CTS² interactions

We are speeding up tokamak simulations through PETSc-hypre combo

- CEMM's M3D code is built upon PETSc's distributed data structures
- hypre's AMG solver (via PETSc) is now speeding up simulations
 - Perfect iteration scaling
 - Still performance issues to resolve
 - Time is halved or better for large runs

NSTX sawtooth, showing pressure contours and surface with some B-lines

We are generalizing our *AMG* framework to address new problem classes

 Maxwell and Helmholtz problems have huge near null spaces and require more than pointwise smoothing to achieve optimality in multigrid

Model of a section of the Next Linear Collider structure

Resonant frequencies in a Helmholtz Application

- Our new theory allows for any type of smoother, and also works for a variety of coarsening approaches (e.g., vertex-based, cell-based, agglomeration)
- A paper is in the works (will submit any day now)

The new theory separates construction of coarse-grid correction into two parts

• The following measures the ability of a given coarse grid Ω_c to represent algebraically smooth error:

$$\mu^* \equiv \min_{P} \max_{e \neq 0} \mu(PR, e)$$

- **Theorem:** (1) Assume that $\mu^* \le K$ for some constant K.
 - (2) Assume that any one of the following holds for $\eta \ge 1$:

$$\langle A Q e, Q e \rangle \leq \eta \langle A e, e \rangle, \forall e$$

 $\langle A (I - Q) e, (I - Q) e \rangle \leq \eta \langle A e, e \rangle, \forall e$
 $\langle A P e_c, S e_s \rangle^2 \leq (1 - \eta^{-1}) \langle A P e_c, P e_c \rangle \langle A S e_s, S e_s \rangle, \forall e_c, e_s$

Then, $\mu(PR, e) \leq \eta K$, $\forall e$.

- (1) insures coarse grid quality use CR
- (2) insures interpolation quality necessary condition!

CR is an efficient method for measuring the quality of the set of coarse variables

- CR (Brandt, 2000) is a modified relaxation scheme that keeps the coarse-level variables, Ru, invariant
- We have defined several variants of CR, and shown that fast converging CR implies a good coarse grid:

$$\mu^* \leq \left(\frac{\Delta^2}{2-\omega}\right) \frac{1}{1-\rho_{cr}}$$

- Hence, CR can be used as a tool to efficiently measure the quality of a coarse grid!
- General idea: If CR is slow to converge, either increase the size of the coarse grid or modify relaxation
- F-relaxation is a specific instance of CR

→ Initialize U-pts

- → Do CR and redefine U-pts as points slow to converge
- → Select new C-pts as indep. set over U

- → Initialize U-pts
- → Do CR and redefine U-pts as points slow to converge
- → Select new C-pts as indep. set over U

- → Initialize U-pts
- → Do CR and redefine U-pts as points slow to converge
- → Select new C-pts as indep. set over U

- → Initialize U-pts
- → Do CR and redefine U-pts as points slow to converge
- → Select new C-pts as indep. set over U

- → Initialize U-pts
- → Do CR and redefine U-pts as points slow to converge
- → Select new C-pts as indep. set over U